Optimisation models and algorithms for workforce scheduling and routing
نویسنده
چکیده
This thesis investigates the problem of scheduling and routing employees that are required to perform activities at clients’ locations. Clients request the activities to be performed during a time period. Employees are required to have the skills and qualifications necessary to perform their designated activities. The working time of employees must be respected. Activities could require more than one employee. Additionally, an activity might have time-dependent constraints with other activities. Time-dependent activities constraints include: synchronisation, when two activities need to start at the same time; overlap, if at any time two activities are being performed simultaneously; and with a time difference between the start of the two activities. Such time difference can be given as a minimum time difference, maximum time difference, or a combination of both (min-max). The applicability of such workforce scheduling and routing problem (WSRP) is found in many industries e.g. home health care provision, midwives visiting future mothers, technicians performing installations and repairs, state agents showing residences for sale, security guards patrolling different locations, etc. Such diversity makes the WSRP an important combinatorial optimisation problem to study. Five data sets, obtained from the literature, were normalised and used to investigate the problem. A total of 375 instances were derived from these data sets. Two mathematical models, an integer and a mixed integer, are used. The integer model does not consider the case when the number of employees is not enough to perform all activities. The mixed integer model can leave activities unassigned. A mathematical solver is used to obtain feasible solutions for the instances. The solver provides optimal solutions for small instances, but it cannot provide feasible solutions for medium and large instances. This thesis presents the gradual development of a greedy heuristic that is designed to tackle medium and large instances. Five versions of the greedy heuristic are presented, each of them obtains better results than the previous one. All versions are compared to the results obtained by the mathematical solver by using the mixed integer model. The greedy heuristic exploits domain information to speed the search and discard infeasible solutions. It uses tailored functions to deal with each of the time-dependent activity constraints. These constraints make more difficult the solution process. Further improvements are obtained by using tabu search. It provides moves based on the tailored functions of the greedy heuristic. Overall, the greedy heuristic and the tabu search, maintain feasible solutions at all times. The main contributions of this thesis are: the definition of WSRP; the introduction of 375 instances based on five data sets; the adaptation of two mathematical models; the introduction of a greedy heuristic capable of obtaining better results than the solver; and, the implementation of a tabu search to further improve the results.
منابع مشابه
Selecting Genetic Operators to Maximise Preference Satisfaction in a Workforce Scheduling and Routing Problem
The Workforce Scheduling and Routing Problem (WSRP) is a combinatorial optimisation problem that involves scheduling and routing of workforce. Tackling this type of problem often requires handling a considerable number of requirements, including customers and workers preferences while minimising both operational costs and travelling distance. This study seeks to determine effective combinations...
متن کاملMULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY
The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...
متن کاملIntroduction to Scheduling: Terminology, Classification
General Optimization Methods Mathematical Programming, Constraint Programming, Heuristics Problem Specific Algorithms (Dynamic Programming, Branch and Bound) Scheduling Single and Parallel Machine Models Flow Shops and Flexible Flow Shops Job Shops Resource-Constrained Project Scheduling Timetabling Interval Scheduling, Reservations Educational Timetabling Workforce and Employee Timetabling Tra...
متن کاملSupply Chain Scheduling Using a Transportation System Composed of Vehicle Routing Problem and Cross-Docking Approaches
This study considers a combination of cross-docking and vehicle routing problem (VRP) approachesto transport raw material and parts in a supply chain. The supply chain is composed of some supplierswhich are spread in different geographical zones and multiple shared vehicles with different speedsand capacities for transporting orders from the suppliers to a manufacturer. After ...
متن کاملTowards an Efficient API for Optimisation Problems Data
The literature presents many application programming interfaces (APIs) and frameworks that provide state of the art algorithms and techniques for solving optimisation problems. The same cannot be said about APIs and frameworks focused on the problem data itself because with the peculiarities and details of each variant of a problem, it is virtually impossible to provide general tools that are b...
متن کاملFlexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method
This paper proposes an ant colony optimisation-based software system for solving FMS scheduling in a job-shop environment with routing flexibility, sequence-dependent setup and transportation time. In particular, the optimisation problem for a real environment, including parallel machines and operation lag times, has been approached by means of an effective pheromone trail coding and tailored a...
متن کامل